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VIBRATIONS OF FLUID-FILLED HERMETIC CANS
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Free, conservative vibrations of a hermetic can, simply supported at the base, are studied. The
can is composed by a circular cylindrical shell and two identical circular plates connected to the
shell at its ends. The arti"cial spring method, which is an extension of the classical
Rayleigh}Ritz method, is used to solve the system by using substructuring. The can is studied
empty and "lled with an inviscid and incompressible #uid. Fluid volume conservation
is applied. The interaction between the plates and the shell via the #uid is considered, and
exact expressions for the #uid velocity potential are used. The e!ect of #exibility of
joints between plates and shell is investigated. Results for a #uid-"lled, simply supported
shell closed by rigid ends are also obtained and compared to the classical open-end shell.
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1. INTRODUCTION

HERMETIC CANS ARE LARGELY EMPLOYED as containers of liquids. They are composed of
a circular cylindrical shell, joined to two circular end-plates. Their modal behaviour has
been investigated in the empty case by several researchers. Hirano (1969) studied axisym-
metric vibrations of thin drums (cans) by minimizing the Lagrangian; this approach was
extended to other modes by Takahashi and Hirano (1970). Takavoli & Singh (1989, 1990)
studied theoretically a hermetic can by using the state-space method, which is a transfer-
matrix-based substructuring method; they also investigated the same can experimentally
and by using a FEM code. Huang & Soedel (1993) applied the receptance method to the
study of free vibrations of circular plates welded to a cylindrical shell, including the hermetic
can case. A similar problem has been investigated by Yuan & Dickinson (1994) by using the
arti"cial spring method which is an extension of the classical Rayleigh}Ritz method,
suitable for substructuring. This method had been developed by Yuan and Dickinson (1992)
and Cheng & Nicolas (1992). The arti"cial spring method has been extended to study
#uid}structure interaction by Cheng (1994) in the case of a light-#uid approximation and by
Amabili (1997a, b) in the case of dense #uid (liquid).

The only work related to vibrations of cans in contact with dense #uid is that of Harari
et al. (1994), studying a sti!ened and submerged cylindrical shell closed by two end-plates
and immersed in unbounded #uid. They neglected the interaction between the plates and
the shell via the #uid and used the expression of the #uid load on the end-plates obtained for
circular plates with a rigid extension (circular plate in an in"nite ba%e). No studies are
available for free vibrations of liquid-"lled cans. Otherwise, liquid-"lled tanks composed of
a circular cylindrical shell and a #exible or rigid bottom plate have been widely studied, e.g.
by Amabili et al. (1998), Amabili (1997a), Chiba (1996), Gonialves & Ramos (1996), Yamaki
et al. (1984); however, in these studies there exists a free liquid surface and hence they are
only partially related to the present case.
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The present study investigates free, conservative vibrations of a hermetic can, simply
supported at the base. The can is composed of a circular cylindrical shell and two identical
circular plates connected to the shell at its ends. The use of arti"cial springs at the junctions
allows us to study vibrations of this relatively complex system. In particular, the joints
between the components of the structure are replaced by arti"cial springs that are distrib-
uted along the entire joint length. Only rotation at the shell}plate joints is coupled
by rotational springs. The can is "rst studied empty and then "lled with an inviscid and
incompressible #uid. Fluid volume conservation is applied. The interaction between the
plates and the shell via the #uid is considered and exact expressions of the #uid velocity
potential are used. The e!ect of #exibility of joints between plates and shell is also
investigated.

2. THE EMPTY CAN

The system studied is composed of a circular cylindrical shell and two circular plates
connected to the shell at its ends. The bottom plate is assumed to be simply supported, in
order to prevent rigid-body modes of the system. When a plate is joined to a circular
cylindrical shell, in general three displacements and two slope connections could be
considered, according to classical thin shell theory. However, if one only investigates lower
modes of the system, the plates can be assumed inelastic in their plane. Moreover, in#uences
of connection de#ections in the tangential planes of the shell can be neglected with respect
to transverse amplitudes. Actually, for very thick plates, the shell axial constraint can be
important and it should be properly modelled, but this is very limited for thin plates.
Therefore, only the radial slope at the plate boundary can be considered to be coupled to
the axial slope of the shell at the ends. A similar approach was used by Cheng & Nicolas
(1992), Cheng (1994), Amabili (1997a) and Amabili et al. (1998). Huang & Soedel (1993) used
two connections when the plate was not connected to the shell simple support. In the
present case, only one connection is used. In fact, the joints between the shell and the plates
give a reciprocal constraint that can be modelled as a simple support. Therefore, their
reciprocal rotation at the edges is joined by introducing arti"cial rotational springs of
appropriate sti!ness. The sti!nesses of these springs are chosen to be very high with respect
to the sti!ness of the #exible components of the can, in order to simulate a welded
connection between the shell and the plates. Moreover, the e!ect of the elasticity of the joint
is investigated by using the present model.

The top plate gives to the top end of the shell a constraint that can be conveniently
modelled with a simple support for all the modes of vibration without movement of the can
longitudinal axis. On the other hand, for beam-bending modes of the can, the cross-section
of the shell at the top end remains circular but it moves with respect to the base, so that the
top plate does not constrain these modes. Hence, these modes may correctly be studied by
considering a free top-end of the shell component. In the present study, the shell is
considered to be simply supported at both ends, so that this model cannot be used to study
the beam-bending modes of cans simply supported only at the base. However, for the usual
geometry of cans, lower shell-modes present more than one circumferential wave and can be
conveniently studied by using the present model.

The hermetic can considered has radius a and height ¸, and is conveniently studied in the
polar coordinates (x, r, h); the origin O of the coordinate system is placed on the can axis at
half-distance from the end-plates (Figure 1). Due to the axial symmetry of the structure, only
modes of the shell and the plates with the same number n of nodal diameters (or circum-
ferential waves) are coupled. A nodal diameter is a diameter in the cross-section of the shell
(or in the plane of the plate) connecting points which are immobile during vibration.



Figure 1. Geometry of the can and coordinate system.
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Besides, it is interesting to note that, due to axial symmetry, for each asymmetric mode
(n'0) there exists a second mode having the same frequency and shape but angularly
rotated by n/2n.

In the present study identical end-plates are considered, so that the system is symmetric
with respect to the plane x"0; therefore, it displays only symmetric and antisymmetric
modes, in a radial section of the can, with respect to this plane.

The Rayleigh}Ritz method (Amabili 1997b) is applied to "nd natural frequencies and
modes of the #uid-"lled can, the time variation being assumed to be harmonic. Therefore,
the mode shapes w of the shell wall in the radial direction (Figure 1) can be expressed as
follows:

w(x,h)"G
cos (nh)

=
+
s/1

q
s
cos [(2s!1)nx/¸] symmetric modes

cos (nh)
=
+
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q
s
sin (2snx/¸) antisymmetric modes,

(1)

where n and s are the number of nodal diameters and of axial half-waves, respectively, and
q
s
are the parameters of the Ritz expansion. The eigenvectors of the empty simply supported

cylindrical shell are used as admissible functions.
The mode shapes w

B
of the bottom circular plate in the transverse direction of the plate

can be given as (Amabili 1997a)
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where n and i are the number of nodal diameters and circles, respectively, a is the plate
radius, b

i
are the parameters of the Ritz expansion, and j

n,i
is the well-known frequency

parameter that is related to the plate natural frequency; J
n
and I

n
are the Bessel function and
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modi"ed Bessel function of order n, respectively. In equation (2), the in vacuo eigenfunctions
of the simply supported circular plate are assumed as admissible functions. The trial
functions are linearly independent and constitute a complete set. Values of j

n,i
for simply

supported plates are given, e.g., by Leissa & Narita (1980).
Similarly, mode shapes w

T
of the top circular plate can be given as
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where h
i
are the parameters of the Ritz expansion. To simplify the computations, the mode

shape constants, A
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and C
n,i

, are normalized in order to have (Wheelon 1968)
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It is interesting to note that, for the system of Figure 1, the following conditions can be
imposed:

w
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B
antisymmetric modes. (6a, b)

By using equations (6) we get
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i
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i
antisymmetric modes. (7a, b)

In order to solve the problem, we evaluate the kinetic and potential energies of the shell,
plates and #uid. The reference kinetic energy ¹*

S
of the shell, neglecting the tangential and

rotary inertia, is given by
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where h
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is the shell thickness, o
s
is the density of the shell material (kg/m3) and

t
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In equation (8) the orthogonality of the sine function in the interval [!¸/2, ¸/2] has been
used. Similarly, the reference kinetic energy ¹*
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of the plates is given by
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where h
P

is the plate thickness and o
P

is the density of the plate material (kg/m3). In
equation (9) the orthogonality of Bessel functions (plate mode shapes) in [0, a] has been
used.
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It should be noted that the maximum potential energy of each mode of the empty shell
(without the end plates) is equal to the reference kinetic energy of the same mode multiplied
by the squared circular frequency u

s
2 of this mode. Moreover, due to the series expansion of

the mode shape, the potential energy is the sum of the energies of each single component
mode. As a consequence, the maximum potential energy of the shell may be expressed
as
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where u
s
are the circular frequencies of the symmetric and antisymmetric #exural modes of

the simply supported shell that can be computed by using, for example, the FluK gge theory of
shells (Leissa 1973). Similarly, the maximum potential energy of the two end-plates is the
sum of the reference kinetic energies of the eigenfunctions of the plates in vacuum multiplied
by uJ 2
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where the plate circular frequency uJ 2
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In a can section containing the can axis, the rotations at the plate edges are considered

joined to the rotations at the shell edges, as previously discussed. The shell and the plates
are connected together by arti"cial rotational springs of appropriate sti!ness, continuously
distributed around the circumference.

The maximum potential energy of the two distributed rotational springs connecting the
two end-plates and the shell is
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where c is the spring sti!ness (Nm/m). It should be noted that only the variation of the angle
between the shell and the plates contributes to the potential energy stored by the rotational
spring. Simple calculations for symmetric modes give
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and for antisymmetric modes
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3. DYNAMIC BEHAVIOUR OF THE FLUID-STRUCTURE INTERACTION

The can is considered completely "lled with an inviscid and incompressible #uid. Hydros-
tatic pressure e!ects and damping are neglected in the present study. For an incompressible
and inviscid #uid, the deformation potential satis"es the Laplace equation

+2/ (r, h, x)"0. (14)

The deformation potential / is related to the #uid velocity potential /I by

/I (x, h, r, t)"iu/e*ut, (15)

which is assumed to be harmonic; i is the imaginary unit and u is the natural circular
frequency of vibration. The velocity of the #uid v is related to /I by v"!grad/I . The #uid
deformation potential, using the principle of superposition, can be divided into

/"/ (1)#/(2), (16)

where /(1) describes the velocity potential of the #uid associated with the #exible shell while
considering the plates as rigid, and /(2) describes the #uid velocity potential for the #exible
plates while considering the shell as rigid. The boundary conditions imposed to the #uid for
the two complementary boundary value problems are (Amabili 1997b)
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Equations (17) and (18) express the contact condition between a #uid (without cavitation)
and a #exible or rigid wall. The reference kinetic energy ¹*

F
of the #uid, by using the Greens

theorem (e.g. Amabili 1997b), is
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where o
F

is the mass density of the #uid, w
P

indicates w
B

when integrating on S
B

and
w
T

when integrating on S
T
, z is the direction normal at any point on the boundary surface of

the liquid domain and is pointed outwards, S
S

is the shell lateral surface, S
B

is the bottom
plate surface and S

T
is the surface of the top plate.

3.1. FLUID-SHELL INTERACTION

In this section, the #uid}structure interaction of a simply supported, circular cylindrical and
#exible shell of a can with rigid end-plates is considered. A large number of papers on the
vibrations of partially #uid-"lled shells have been published [e.g. Berry & Reissner (1958),
Lakis & PamKdoussis (1971), Bauer & Siekmann (1971), Yamaki et al. (1984), Amabili
& Dalpiaz (1995), Gonialves & Ramos (1996), and Chiba (1996)].
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The liquid deformation potential /(1) is assumed to be of the form (Amabili 1997a)
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Therefore, the reference kinetic energy ¹*
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of the #uid associated with symmetric modes of
the shell is
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For antisymmetric modes, equation (17b) gives
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Therefore, the reference kinetic energy ¹*
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of the #uid associated with antisymmetric modes
of the shell is
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3.2. FLUID-PLATE INTERACTION

In this section, the #uid}structure interaction of the simply supported, #exible end-plates of
a can with a rigid shell is considered. Flexible bottom plates in rigid tanks were studied, e.g.,
by Bhuta and Koval (1964), Bauer and Siekmann (1971), Chiba (1993) and Amabili (1997c);
Bauer (1995) studied the vibration of a circular top plate in a liquid-"lled rigid container.

The liquid deformation potential /(2) is assumed of the form (Amabili 1997c)
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where, by using equation (32), one obtains (Wheelon 1968)
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Hence, the reference kinetic energy ¹*
F2

of the #uid associated with symmetric modes of the
end-plates is given by
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For antisymmetric modes, equation (31) is replaced by
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in this case are given by
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In addition, the constant K
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is given by
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Hence, the reference kinetic energy ¹*
F2

of the #uid associated with antisymmetric modes of
the end plates is given by
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3.3. SHELL-PLATE INTERACTION VIA THE FLUID

Equation (19) shows that in the reference kinetic energy of the #uid ¹*
F
, two terms appear

because of the coupling e!ect of the #uid. In fact, even if the coupling springs between the
plates and the shell were eliminated, the vibration of the two-end plates and the shell would
remain coupled by the #uid inside the can. In particular, the quantity ¹*

F1~2
, for symmetric
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modes, is given by
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The quantity ¹*
F1~2

, for antisymmetric modes, is given by

¹*
F1~2

"G
!

1

2
o
F
at

n

=
+
s/1

=
+
i/0

q
s
b
i

=
+
k/1

K
n,i,k

J
n
(e
n,k

)f(A)
n,s,k

, nO0,

!

1

2
o
F
at

0

=
+
s/1

=
+
i/0

q
s
b
iC!2q

0,i
f(A)
0,s

#

=
+
k/1

K
0,i,k

J
0
(e
0,k

) f(A)
0,s,kD , n"0,

(46)

where the constants K
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are given by equation (40) and
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The component¹*
F2~1

of the reference kinetic energy of the #uid has the following expression
for symmetric modes:
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where the constants p(S)
s,m

are given in equation (24), and (Wheelon 1968)
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The term ¹*
F2~1

for antisymmetric modes is given by
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where the constants p(A)
s,m

are given in equation (28); m(A)
n,i,m

and k(A)
n,i,m

are obtained replacing 2m
by (2m-1) in equations (50) and (51), respectively.

3.4. SYMMETRIC MODES FOR n"0 AND FLUID VOLUME CONSERVATION

In the case of symmetric modes and n"0 the condition for the conservation of the volume
of the contained incompressible #uid must be imposed; in all the other cases it is automati-
cally satis"ed by the assumed mode shapes. It is given by
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After simple calculations, one obtains
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For symmetric modes and n"0 two additional terms must be added to the #uid
deformation potential / previously calculated. The "rst term is the constant /
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an additional contribution to the reference kinetic energy of the #uid,
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By using equation (54) it is found that this contribution must be zero.
The second additional term is /

a
and is given by
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From equations (57) and (58) we obtain, respectively,
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By using equation (54), we "nd that the right-hand side of equations (59a) and (59b) are
equal; this result guarantees that /

a
is e!ectively a solution of our problem. The term /

a
is



246 M. AMABILI
associated with an additional reference kinetic energy given by
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4. THE RAYLEIGH}RITZ METHOD

In order to solve the problem, it is useful to introduce the Rayleigh quotient (Amabili 1997b;
Zhu 1994) for the systems considered, which is
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For the numerical calculation of the natural frequencies and the parameters of the Ritz
expansion of modes, only N terms in the expansion of w, equation (1), and NM in the
expansion of w

B
and w

T
, equations (2) and (3), are considered, where N and NM must be

chosen large enough to give the required accuracy to the solution. Thus, all the energies are
given by "nite summations. Here it is convenient to introduce a vectorial notation. The
vector q of the parameters of the Ritz expansions is de"ned by
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Maximum potential energies <
S
, <

P
and <

C
and reference kinetic energies ¹*

S
, ¹*

P
and

¹*
F

can be written in the following form:

¹*d"qTMdq, <d"qTKdq, (65a, b)

where Md and Kd are (N#NM )](N#NM ) matrices and d replaces the symbols S, P and
F in equation (65a) and S, P and C in equation (65b). Thus, the values of the vector q of the
Ritz parameters are determined in order to render equation (63) stationary, and the
following Galerkin equation is obtained:

(KS#KP#KC)q!u2 (MS#MP#MF) q"0, (66)

where u is the circular frequency (rad/s) of the #uid-"lled hermetic can. Equation (66) gives
a linear eigenvalue problem for a real, symmetric matrix; real eigenvalues are obtained.

In the case of symmetric modes, for n"0 the Galerkin equation is

C
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TABLE 1

Comparison of natural frequencies (Hz) computed for the studied empty can and n"3; S and
P indicate shell- and plate-dominant modes, respectively

Mode Present study Huang & Soedel (1993) Di!erence (%)

Symmetric 1st (S) 1734 1735 0)06
2nd (P) 2384 2343 1)7
3rd (P) 5124 5080 0)86
4th (S) 6003 5997 0)1

Antisymmetric 1st (P) 2365 2326 1)6
2nd (S) 4223 4224 0)02
3rd (P) 5177 5125 1)0
4th (S) 7100 7102 0)03
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where the vector M
A

has dimension (N#NM ) and represents the additional term to the
reference kinetic energy of the #uid given by equation (55) that must be zero; the last row in
equation (67) expresses the conservation of the #uid volume. Matrix M

F
includes the

contribution of equation (60) in this case. The "rst eigenvalue of equation (67) is zero; it
corresponds to q"0 and must be disregarded.

In addition, the pressure exerted by the #uid at a point of the can wall can be computed
by using the linearized Bernoulli equation

(p)
10*/5

"o
F
(L/I /Lt)

10*/5
"!o

F
u2 (/)

10*/5
e*ut . (68)

5. NUMERICAL RESULTS AND DISCUSSION

Numerical results have been carried out by means of the Mathematica software (Wolfram
1996). The following dimensions and material properties have been chosen in order to
compare the results with those obtained by Huang & Soedel (1993) in the case of an empty
can: mean radius a "0)1 m, ¸"0)2 m, h

S
"h

P
"0)002 m, E

S
"E

P
"206]109 Pa,

o
S
"o

P
"7850 kg/m3 and l

S
"l

P
"0)3. Twenty shell and plate modes have been con-

sidered in the Rayleigh}Ritz expansions, and 20 terms have been included in the expansion
of U(1)

s
and U(2)

i
. They are enough to give a good accuracy, as will be shown in Section 5.2.

The FluK gge theory of shells has been used, unless otherwise speci"ed.
The plate and the shell are assumed to be joined by rotational springs of very high

sti!ness c simulating a rigid joint. In the present case, it was found that a value of c"108 N
is enough to simulate a rigid rotational joint; in fact, an increment to this value does not
a!ect the natural frequencies of the system. The e!ect of the joint #exibility on natural
frequencies will be investigated in Section 5.2.

5.1. EMPTY CAN

This case has been analysed in order to compare the present results with data available in
the literature. The comparison is shown in Table 1 for modes having n"3 nodal diameters.
A very good agreement between the natural frequencies obtained by Huang & Soedel
(1993), who used the receptance method, and the present results was found.

It is interesting that, even though a completely #exible structure is studied, it is still
possible to recognize modes dominated by the plate displacement (P mode) or by the shell
displacement (S mode). Discussion on symmetric and antisymmetric modes with respect to



TABLE 2

Convergence of natural frequencies (Hz) with the number of terms N"NM in the expansion
of mode shapes for the studied water-"lled can and n"3; S and P indicate shell and

plate-dominant modes, respectively

Mode N"10 N"15 N"20 N"25 N"30

Symmetric 1st (S) 1013 1012 1011 1011 1011
2nd (P) 1685 1653 1638 1629 1623
3rd (S) 3922 3918 3914 3909 3905
4th (P) 4074 4005 3977 3964 3956

Antisymmetric 1st (P) 1683 1652 1637 1628 1623
2nd (S) 2607 2603 2601 2600 2600
3rd (P) 4061 4003 3976 3960 3951
4th (S) 4981 4964 4957 4952 4950

Figure 2. First four symmetric modes of the can "lled with water; n"3: (a) 1st S mode, 1011 Hz; (b) 1st P mode,
1638 Hz; (c) 2nd S mode, 3914 Hz; (d) 2nd P mode, 3977 Hz.
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plane x"0 has been made in the previous sections. However, it can still be observed that,
when n is odd and one observes a can section along its axis, one gets antisymmetric mode
shapes with respect to the can axis; while, for n even, one gets symmetric shapes.

5.2. WATER-FILLED CAN

The can is assumed to be completely "lled with water having a mass density
o
F
"1000 kg/m3. Table 2 shows the convergence of the method as the number of terms in



Figure 3. First four antisymmetric modes of the can "lled with water; n"3. (a) 1st P mode, 1637 Hz; (b) 1st
S mode, 2601 Hz; (c) 2nd P mode, 3976 Hz; (d) 2nd S mode, 4957 Hz.

Figure 4. E!ect of spring sti!ness c on natural frequencies of the water-"lled can; n"3: , 1st S mode
(symmetric); , 1st P mode (symmetric); , 1st P mode (antisymmetric:)
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Figure 5. Natural frequencies of symmetric modes versus the number of nodal diameters; water-"lled can: , 1st
P mode; , 1st S mode; , 2nd P mode; , 2nd S mode.

Figure 6. Natural frequencies of antisymmetric modes versus the number of nodal diameters; water-"lled can:
, 1st P mode; , 1st S mode; , 2nd P mode; , 2nd S mode.
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the series expansions is increased; it is seen that 20 terms give good accuracy for this
application. It was also observed that the "rst shell-dominant mode converges very quickly
for both symmetric and antisymmetric cases. The third symmetric mode (shell-dominant)
converges slowly as a consequence of its mode shape involving many plate modes; however,
the di!erence between the natural frequency evaluated with 10 terms and the one evaluated
with 30 terms is of 0)4% only. In general, more terms are necessary to estimate with good
accuracy the natural frequencies of plate-dominant modes.

Figure 2 shows symmetric modes of the water-"lled can for n"3. Natural frequencies are
given in the caption and show a large reduction with respect to the empty case. The "rst and
third modes are shell-dominant, while the second and fourth modes are plate-dominant.
Figure 3 shows antisymmetric modes for the same case. In this case, the "rst and third



Figure 7. Natural frequencies of symmetric modes versus the number of nodal diameters; empty can: , 1st
P mode; , 1st S mode; , 2nd P mode; , 2nd S mode.

Figure 8. Natural frequencies of antisymmetric modes versus the number of nodal diameters; empty can: , 1st
P mode; , 1st S mode; , 2nd P mode; , 2nd S mode.
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modes are plate-dominant, while the second and fourth are shell-dominant. The fourth
mode is particularly interesting because it shows a large interaction of shell and plates in the
dynamic behaviour of the system.

The e!ect of the sti!ness of the joint at the shell}plate junctions is investigated in
Figure 4. Here it is seen that all curves become horizontal for c"107 N; therefore a further
increase of the joint sti!ness over this value does not a!ect natural frequencies. For the case
studied, the values of joint sti!ness having the largest in#uence on natural modes lie
between 103 and 105 N.

Natural frequencies of symmetric and antisymmetric modes computed for di!erent
numbers of nodal diameters n are given in Figures 5 and 6, respectively. Natural frequencies
of plate-dominant modes increase with n, excluding the case n"0 of symmetric modes that
has a particular behaviour, as already described in previous sections. In fact, this case is



Figure 9. Natural frequencies of the "rst four symmetric modes of the can versus the #uid density; n"3: 1st
S mode; , 1st P mode; 2nd S mode; 2nd P mode.
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governed by volume conservation, so that the plate mode without nodal circles is imposs-
ible and the "rst plate mode has one nodal circle. Natural frequencies of shell-dominant
modes initially decrease with n, and then increase. In particular, the "rst shell-dominant
symmetric mode has its minimum natural frequency for n"4. Figures 5 and 6 can be
compared to the analogous Figures 7 and 8 obtained for the same empty can (with vacuum
inside; in case of air inside, it is necessary to include the acoustic modes of the cavity) in
order to evaluate the e!ect of the water contained.

The e!ect of the density of the contained #uid on the natural frequencies of the "rst two
shell- and plate-dominant symmetric modes with n"3 is shown in Figure 9. In particular,
the 2nd shell-dominant mode is more sensible to the increment of the #uid density than the
2nd plate-dominant mode; therefore, for o

F
:1000 kg/m3 the 2nd shell-dominant mode is

associated with a frequency lower than that of the 2nd plate-dominant mode.
The relative edge sti!ness of the coupled shell and plates is fundamental to having

a strong interaction between shell and plate modes. Figure 10 shows the e!ect of the
thickness of the end-plates on the natural frequencies of the system for symmetric modes
with n"3. In particular, the e!ect of the plate thickness on the "rst shell-dominant mode is
given in Figure 10(a) and the e!ect on the "rst two plate-dominant modes is presented in
Figure 10(b). Figure 10(a) shows that the natural frequency of the "rst shell-dominant mode
changes signi"cantly for a plate thickness lying between 1 and 8 mm; outside this interval,
its change is much less signi"cant. In fact, very thin end-plates cannot constrain shell
rotation at the edge and give a constraint to the shell that is very close to a simple support;
on the other hand, very thick end-plates give a constraint to the shell that is very close to
clamped edges.

The proposed method is suitable for the study of two plates in a rigid cylindrical
container and of a shell closed by two rigid ends in the presence of dense #uid. The last case
is particularly interesting because it allows comparison with the classical, and much simpler,
problem of a simply supported shell with open ends (/"0 for x"$¸/2) completely "lled
with water. Comparison is presented in Table 3 for a simply supported shell having the
same material properties as the previously studied can and dimensions: a"0)175 m,
¸"0)6 m and h

S
"0)001 m. Natural frequencies of a shell with closed ends are always

smaller than those of a shell with open ends. This is due to the larger added mass of the
contained water that increases when the liquid is more constrained, as observed in other
#uid}structure systems (Amabili & Kwak 1996). Di!erences for the shell studied with open



Figure 10. Natural frequencies of symmetric modes of the water-"lled can versus the plate thickness; n"3. (a)
1st S mode; (b) *r*, 1st P mode; *e*, 2nd P mode.

TABLE 3
Natural frequencies (Hz) of the simply supported
shell with closed and open ends "lled with water

(Donnell's theory of shells) for n"4

m Closed ends Open ends Di!erence (%)

1 102)3 105)3 2)9
2 318)8 330)0 3)5
3 602)7 625)9 3)8
4 892)3 927)3 3)9
5 1160)2 1205)5 3)9
6 1398)8 1452)5 3)8
7 1609)9 1669)7 3)7
8 1798)2 1861)4 3)5
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and closed ends lie between 2)9 and 3)9% for the modes considered. It is of interest to
observe that the condition of rigid end-plates can be obtained by the present theory by
giving a very high value to Young's modulus of the plates (E

P
PR).

6. CONCLUSIONS

Natural modes of cans are largely a!ected by the presence of a dense #uid inside. In fact, for
lower modes, the #uid pressure on the wetted surface is in phase with the structural
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acceleration, thus the #uid appears as an added mass. However, for symmetric modes and
n"0, the #uid volume conservation plays an important role, so that plate modes without
nodal circles are no longer possible. Shell- and plate-dominant modes are still recognizable
for the "rst modes and di!erent n values; however, already the "rst modes present an
important interaction of shell and plate modes. This phenomenon is magni"ed when the
#exural rigidity of shell and plates is similar (for the usual geometry, when the shell is
thinner than the plates). The e!ect of the joint #exibility at the shell-plate links can be very
large and the full range of #exibility has been investigated.

The special case of a #exible, water-"lled shell closed by rigid ends displays natural
frequencies larger by a few present than the same water-"lled shell with open ends; in fact,
constraints to the #uid movement enhance the added mass of the contained #uid.
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